
Magnon dispersion in 

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys.: Condens. Matter 11 2649

(http://iopscience.iop.org/0953-8984/11/12/019)

Download details:

IP Address: 171.66.16.214

The article was downloaded on 15/05/2010 at 07:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/12
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter11 (1999) 2649–2659. Printed in the UK PII: S0953-8984(99)96774-7

Magnon dispersion in MnWO4

H Ehrenberg†§, H Weitzel†, H Fuess† and B Hennion‡
† Darmstadt University of Technology, D-64287 Darmstadt, Germany
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Abstract. The four magnon branches in the antiferromagnetic ground state of MnWO4 were
measured by inelastic neutron scattering for two directions. On the basis of a model including
isotropic Heisenberg exchange and uniaxial anisotropy, analytical expressions were derived for the
dispersion relations in the spin-wave approximation using the Holstein–Primakoff and Bogoliubov
transformations. By comparison between observed and calculated excitation energies, a very
reliable determination of model parameters was possible. In the framework of this model, the spin
deviations at absolute zero and the propagation vector slightly below the transition temperature are
calculated.

1. Introduction

In previous articles we have reported on the magnetic structures and phase transitions in
MnWO4 without an external field [1] and with an external magnetic field applied in different
directions [2]. In zero field three antiferromagnetic phases exist. AF1 is the commensurate
ground state with a collinear arrangement of eight magnetic moments in a primitive magnetic
unit cell. With respect to the chemical cell the magnetic cell is described by the propagation
vector Ek(AF1) = ±(− 1

4,
1
2,

1
2). The easy direction lies within theac-plane and forms an

angle of 37◦ with the a-axis in the(+a,+c) quadrant. Depending on specific conditions, a
first-order phase transition into AF2 takes place between 6.8 K and 8.0 K. The translational
symmetry is described by the propagation vectorEk(AF2) = (−0.2165(25), 1

2, 0.4585(25)),
and the magnetic structure is coplanar in the plane spanned by the easy direction and [010], and
ellipsoidally modulated. A second-order phase transition to AF3 occurs atT = 12.3 K. This
phase is collinear with the same easy direction as AF1 and sinusoidally modulated according to
the propagation vectorEk(AF3) = (−0.2145(30), 1

2, 0.4580(35)), which agrees withEk(AF2)
within experimental uncertainties. The effect of an external field depends on the specific
orientation: if the field is applied parallel to the easy direction of AF1 and AF3, the intermediate
phase AF2 is stabilized; AF1 disappears at aboutH = 2 T and AF3 at aboutH = 9 T. A
further increase in field strength induces a first-order phase transition into a high-field phase
HF at aboutH = 14 T. On the other hand, an applied field parallel to [010] reduces the stability
range of AF2, and AF1, AF2, and AF3 form a triple point atT = 10 K andH = 10 T. The
metamorphism of these different topologies has also been studied in detail by determining the
phase diagram for intermediate field directions, too. The stability ranges of all phases AF1,
AF2, and AF3 are hardly affected by a field applied perpendicular to both the easy direction
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and [010]. This manifold phase diagram including critical end points on one hand and the quite
simple crystal structure of the wolframite type with only one magnetic site situated on a twofold
rotational axis on the other make MnWO4 a promising model system for the investigation of
magnetic phase transitions and related critical phenomena. Reliable conclusions about the
underlying magnetic interactions, however, cannot be drawn from the phase diagrams alone.
For this purpose a sophisticated analysis of the magnetic excitations and their dependence
on momentum transfer is essential. In this contribution we report on the determination of
magnon dispersion in the ground state AF1 of MnWO4 by inelastic neutron scattering for two
directions of momentum transfer. The underlying couplings are deduced for a model including
superexchange couplings via up to two bridging oxygen atoms and a uniaxial anisotropy by
applying Holstein–Primakoff transformation in the spin-wave approximation and Bogoliubov
transformation. The derived values are further used to calculate the spin deviations atT = 0 K
and to compare the predicted propagation vectorEk slightly below the ordering temperatureTN

with Ek(AF3). Furthermore, the temperature dependence of the magnetic excitation energies
at Eq = 0 is given.

2. Experimental procedure

To choose an adequate instrument for this experiment the order of magnitude of the expected
magnetic excitations has to be estimated first. The excitation of lowest energyEmin = hνmin,
νmin = 0.1 THz, is known from antiferromagnetic resonance studies [3]. A rough estimation
for the upper limit of the excitation spectrumEmax = hνmax , νmax = 0.33 THz, is derived from
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Figure 1. Observed intensities and the calculated profile for an energy scan at constant neutron
momentum transferEQ = ( 1

4 ,
3
2 ,− 1

2), i.e. magnon momentumEq = 0. The absolute value of the
final neutron momentum was fixed atkf = 1.1 Å−1, and a Be filter at liquid nitrogen temperature
was used to avoidλ/2 contributions.
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the Ńeel temperatureTN = 13.5 K by using an empirical formula [4]. Therefore, a triple-axes
spectrometer at a cold-neutron source is required for the investigation of magnon dispersion
in MnWO4. All experiments have been performed at the instrument 4F2 of the Laboratoire
Léon Brillouin, Saclay, France, which allows for an energy resolution of about 2 GHz [5]. The
appropriate scan technique for these studies was to collect intensity data at constant neutron
momentum transferEQ and for different energy transfersE. The observed data have been fitted
by a calculated profile, based on the response functionS(ω) of a damped harmonic oscillator
for the magnetic excitations [6]. Experimental data and the fitted profile are shown in figure 1
for EQ = ( 1

4,
3
2,− 1

2) as a representative transfer. The neutron momentum transferEQ is given
with respect to the reciprocal lattice{Ea∗, Eb∗, Ec∗}, defined by the standard setting of the crystal
structure given in table IV of [1]. The sample was a natural single crystal from Peru with a
volume of about 1 cm3 and a mosaicity of about 1◦. Small pieces from this crystal had also been
used for the determination of the magnetic phase diagrams [2]. Preliminary considerations
concerning the magnetic symmetries of AF1 are necessary to choose appropriate dispersion
directions. With respect to the standard setting, the magnetic unit cell of AF1 is spanned by

Eam = 2Ec Ebm = 2Eb Ecm = −2Ea + Ec (1)

and the magnetic space group isPC2/c in the notation of Opechowski and Guccione [7], which
will be used further. According to the notation of Miller and Love [8] this isAb2/a, originally
used for the description of this magnetic structure [9]. The parallelepiped spanned by the
reciprocal-space vectorsEa∗m, Eb∗m, andEc∗m is only of half the volume of the magnetic Brillouin
zone as a consequence of C symmetry. A more suitable basis for the definition of magnon
momenta is therefore given by

Eg1 = Ea∗m + Eb∗m Eg2 = Ea∗m − Eb∗m Eg3 = −Ec∗m (2)

and will be used from now on if not stated otherwise. Both the holosymmetric and the isogonal
point groups ofPC2/c are 2/m, and therefore the basic domain� and representation domain
8 are each one quarter of the magnetic Brillouin zone. Only states within the representation
domain

8 = {Eq|Eq = hEg1 + kEg2 + l Eg3; 06 h 6 1
2,−h 6 k 6 h,− 1

2 6 l 6
1
2} (3)

have to be considered due to Wigner’s theorem. Two dispersion directions of particular interest
are

(i) Eq = (ξ,−ξ, 0) ξ = 0, . . . , 1
2

(ii ) Eq = (−2η,−2η, 4η) η = 0, . . . , 1
4

(4)

because the two directions are different0 → Y paths, preserving either twofold rotational
symmetry (i) or mirror-plane symmetry (ii). The meaning of these directions becomes clearer
if referred to the reciprocal-lattice vectors derived from the standard setting of the crystal
structure, i.e.Eq ′ = (h′, k′, l′) = h′ Ea∗ + k′ Eb∗ + l′ Ec∗:

(i) Eq ′ = (0, ξ,0) ξ = 0, 1
2

(ii ) Eq ′ = (η, 0,−2η) η = 0, 1
4.

(5)

The propagation vectorsEk are also given with respect to this basis. The componentky of
the propagation vector is12 for all phases, indicating a strong antiferromagnetic coupling
parallel to [010]. Therefore, a pronounced dispersion is expected for direction (i). In the
plane of special symmetry, the direction (ii) is pointed out by the ratiokx :kz = −1:2 for
AF1, also nearly obeyed for AF2 and AF3. The magnon dispersion has been measured along
( 1

4,
3
2 − ξ,− 1

2) and(− 1
4,− 1

2 + ξ, 3
2) for direction (i) and along( 1

4 ± η, 3
2,− 1

2 ∓ 2η) for dir-
ection (ii). The uncertainty in magnon momentum, caused by the mosaicity of the crystal, is
about1Eq ′ = (0, 0.03, 0) for direction (i) and1Eq ′ = (0.01, 0.01, 0.003) for direction (ii).
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3. The model

The primitive magnetic unit cell of the collinear ground state AF1 contains eight magnetic
ions, and therefore four magnon branches are expected in zero field, each of them twofold
degenerate. In this section the calculation of the dispersion relations,ω

(j)
± (Eq), j = 1, 2,

is described. First, the model Hamiltonian is given in terms of spin-ladder operators. Then
Holstein–Primakoff transformation is applied, treated in the spin-wave approximation. Finally,
the Hamiltonian is diagonalized by a Bogoliubov transformation onto magnon creation and
annihilation variables.

A reasonable model for the relevant magnetic interactions in MnWO4 has to take into
account superexchange couplings via one and two oxygens of common coordination octahedra
and a uniaxial anisotropy preferring the easy direction of AF1. All experiments have been
performed without an external magnetic field applied, and therefore no additional Zeeman
term will be included. In a rectangular coordinate system

{Eeα, Eeβ, Eeγ }, orientated in such a
way thatEeγ is the easy direction andEeβ parallel to [010], the following Hamiltonian is obtained,
expressed in spin-ladder operators:

Ĥ = Ĥex + Ĥanis

Ĥex = −
∑
i 6=j

Jij

{
Ŝ+
i Ŝ
−
j + Ŝγi Ŝ

γ

j

}
Ĥanis = −

∑
i

Janis
(
Ŝ
γ

i

)2
.

(6)

The twofold rotational site symmetry allows for a more general anisotropy tensor, but there
is no experimental evidence that more than one uniaxial parameter is required. The exchange
couplings included are listed in table 1. The bond angle Mn–O–Mn in the zigzag chains is about
95◦, and therefore the resulting exchange couplingJ1 is expected to be rather small [10]. This
is the striking difference compared to the findings for the other 3d-transition-metal tungstates
MeWO4, Me = Fe, Co, and Ni, which also crystallize in the wolframite-type structure but
exhibit a totally different magnetic behaviour [11].

The Hamiltonian (6) can be transformed into boson creation and annihilation operators
by applying a Holstein–Primakoff transformation [12]:

Ŝ+
j =
√

2Sϕ(nj )aj
Ŝ−j =

√
2Sa†

j ϕ(nj )

Ŝ
γ

j = S − a†
j aj

 j ∈ ui; i = 1, . . . ,4

Ŝ+
m =
√

2Sb†
mϕ(nm)

Ŝ−m =
√

2Sϕ(nm)bm
Ŝ
γ
m = −S + b†

mbm

 m ∈ ul; l = 5, . . . ,8

(7)

with

ϕ(n) =
√

1− n/(2S) (8)

and the number operatorn = a†a or b†b, respectively, depending on the sublattice. The
functionϕ can be expanded, and in the spin-wave approximation only terms up to first order
are included and the one-particle operators are replaced by wave variables:

aui Eq =
√

8

N

∑
j∈ui

ei Eq·Erj aj i = 1, . . . ,4

bul Eq =
√

8

N

∑
m∈ul

e−i Eq·Ermbm l = 5, . . . ,8

(9)
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Table 1. Indirect exchange couplings for the Mn ion at (1
2 , y,

1
4) via one or two oxygens of

a common octahedron,y = 0.6853, together with the values determined and the observed rel-
ative orientations of the two corresponding spin pairs. The anisotropy parameter is refined to
Janis = 0.284kB K.

Position of neighbour Distance (Å) Exchange coupling Value (kB K) Spin alignment

( 1
2 , 1− y, 3

4 ) 3.283 J1 −0.195 ↑↓, ↑↑
( 1

2 , 1− y,− 1
4)

( 1
2 , 2− y, 3

4 ) 4.398 J2 −0.135 ↑↓, ↑↑
( 1

2 , 2− y,− 1
4)

( 3
2 , y, 1

4 ) 4.823 J3 −0.423 ↑↓, ↑↑
(− 1

2 , y, 1
4 )

( 1
2 , y, 5

4 ) 4.992 J4 0.414 ↑↓, ↑↓
( 1

2 , y,− 3
4)

( 1
2 , y + 1, 1

4) 5.753 J5 0.021 ↑↓, ↑↓
( 1

2 , y − 1, 1
4)

( 3
2 , 1− y, 3

4 ) 5.795 J6 −0.509 ↑↓, ↑↓
(− 1

2 , 1− y,− 1
4)

(− 1
2 , 1− y, 3

4 ) 5.873 J7 0.023 ↑↑, ↑↑
( 3

2 , 1− y,− 1
4)

( 3
2 , 2− y, 3

4 ) 6.492 J8 0.491 ↑↑, ↑↑
(− 1

2 , 2− y,− 1
4)

(− 1
2 , 2− y, 3

4 ) 6.561 J9 −1.273 ↑↓, ↑↓
( 3

2 , 2− y,− 1
4)

and their conjugates.N is the number of magnetic ions in the crystal, and the creation
and annihilation operators obey the usual commutation relations for boson operators. The
dispersion relations are derived after applying the Bogoliubov transformation [13]:

αi Eq =
∑
j=1,4

cij aui Eq +
∑
l=5,8

cilb
†
ul Eq i = 1, 4

β
†
l Eq =

∑
j=1,4

clj auj Eq +
∑
m=5,8

clmb
†
um Eq l = 5, 8

(10)

with complex coefficients diagonalizing the Hamiltonian:

Ĥ =
∑
Eq∈BZ

[∑
i=1,4

ωi Eqα
†
i Eqαi Eq +

∑
l=5,8

ωl Eqβ
†
l Eqβl Eq

]
. (11)

After long but straightforward calculations [14], analytical expressions for the dispersion rel-
ations in both directions (4) are derived. They can be expressed as follows:

ω
(j)
± (x)
2S

=
[
c
(j)

0 + c(j)1 x + c(j)2 x2 ±
√
d
(j)

0 + d(j)1 x + d(j)2 x2 + d(j)3 x3

]1/2

j = 1, 2 (12)

with

x =
{

cos(2πξ) for (i) Eq = (ξ,−ξ, 0)
cos(4πη) for (ii) Eq = (−2η,−2η, 4η).

(13)



2654 H Ehrenberg et al

The coefficients are complicated expressions of second and fourth order in the model par-
ameters, and are given in the appendix.

4. Data analysis

For a reliable determination of the model parameters it is essential to know which analytical
expression and observed branch correspond to each other. This relation can only be derived
from the comparison between calculated cross sections and observed intensities. Following an
approach for the calculation of the cross section in the case of only two magnetic sublattices [6],
the following extension to the case of eight sublattices is derived [14]:(

d2σ

d� dE′

)(±)
=
(

d2σ

d� dE′

)(+)
+

(
d2σ

d� dE′

)(−)
(14)

with(
d2σ

d� dE′

)(+)
= r2

0
kf

ki
F (Eq)2 1

4
(1 + q̃2

γ ) exp{−2W(Eq)}2SN
∑
Ek∈BZ

∑
Eg∈G

δ(Eq − Ek − Eg)

×
4∑
j=1

∑
ϕ=α,β

(nϕj Ek + 1)δ(h̄ω − h̄ωϕj Ek)
8∑

i,i ′=1

c̃ij c̃
∗
i ′j exp{i Eg · Eρii ′ } (15)

(
d2σ

d� dE′

)(−)
= r2

0
kf

ki
F (Eq)2 1

4
(1 + q̃2

γ ) exp{−2W(Eq)}2SN
∑
Ek∈BZ

∑
Eg∈G

δ(Eq + Ek − Eg)

×
4∑
j=1

∑
ϕ=α,β

nϕj Ekδ(h̄ω + h̄ωϕj Ek)
8∑

i,i ′=1

c̃∗ij c̃i ′j exp{i Eg · Eρii ′ }. (16)

G is the reciprocal lattice spanned by (2),q̃γ the projection of a unit vector parallel to the
momentum transferEq in the easy direction,W(Eq) the Debye–Waller factor,r0 the classical
electron radius times the gyromagnetic ratio for a neutron, andF(Eq) the magnetic form factor,
in this application for Mn2+ ions. Eρii ′ points from any point of sublatticeui ′ to one point ofui .
The coefficients̃c are defined by the back-transformation to (10):

aui Ek =
∑
j=1,4

c̃ij αj Ek +
∑
m=5,8

c̃imβ
†
mEk i = 1, 4

b
†
ul Ek =

∑
j=1,4

c̃lj αj Ek +
∑
m=5,8

c̃lmβ
†
mEk l = 5, 8.

(17)

The extinguishing rules at the Y point are especially helpful for working out which analytical
branch belongs to the observed excitations. The model parameters are then refined to give
the best agreement between measured and calculated excitation energies using a least-squares
algorithm; see table 1. The observed intensities have not been used for this refinement, because
they provide less precise information than the observed energies. If just one parameter is
varied while all others are kept fixed, changes in the third digit after the point will give a
poorer agreement between observed and calculated branches; however, if all other parameters
are refined again, variations in the second digit after the point will give significantly poorer
agreement. Particular attention had to be given to the fact that the magnetic ground state
is stable for the parameter set used, i.e. the magnetic excitation energies have to be positive
definite at all points in the representation domain8. This is a very useful restriction of the
parameter variety. Observed and calculated dispersion are compared in figure 2; the assignment
of irreducible co-representations and analytical expressions to the branches is given in table 2.
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Figure 2. Observed and calculated magnetic excitation energies for magnon momentaEq ′ =
(−η, 0, 2η) andEq ′ = (0, ξ,0) according to (6).

This model has been confirmed by comparing the observed intensities with the cross sections,
calculated according to equations (14)–(16) for the set of parameters given in table 1. No very
different set of parameters can simultaneously fit the observed energies and intensities.

Table 2. Assignment of magnon symmetries and analytical expressions (12) to the observed
branches, listed in order of increasing energy. All of the branches are twofold degenerate in zero
field.

0 Eq ′ = (0, ξ,0) 3 Eq ′ = (−η, 0, 2η) D Y

0−1 , 0−2 ω−2 31,32 ω+
2 D1, D2 Y−1 , Y−2

0+
1 , 0+

2 ω+
2 31,32 ω+

1 D1, D2 Y+
1, Y+

2
0+

1 , 0+
2 ω−1 31,32 ω−2 D1, D2 Y+

1, Y+
2

0−1 , 0−2 ω+
1 31,32 ω−1 D1, D2 Y−1 , Y−2

5. Discussion

The model presented gives a good description of the magnon dispersion in the ground state
AF1 and provides reliable values for the underlying magnetic couplings. In contrast to the case
for the isostructural compounds MeWO4 with Me= Fe, Co, and Ni, the magnetic interactions
are not dominated by a ferromagnetic 90◦ superexchange within the zigzag chains. For the
cases with Me= Mn and Cu, the sign of the 90◦ superexchange is not determined by the
symmetry of the Me2+ wave functions, and the resulting coupling is expected to be weak.
This is confirmed for MnWO4 by the weak superexchange couplingJ1. The strongest super-
superexchange couplingJ9 is antiferromagnetic and belongs to the pair of spins at the furthest
distance. This is in agreement with our findings for the case of Me= Cu, based on the excitation
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energies of CuWO4 [15] and the comparison of the magnetic structures of CuWO4 and of the
isostructural compound CuMoO4-III [16]. Accordingly, the antiferromagnetic couplings are
stronger for larger bond angles Cu–O–O and O–O–Cu within the exchange path Cu–O–O–
Cu, and consequently the strongest coupling belongs to the furthest Cu–Cu distance, too. In
the copper compounds, shorter and longer Cu–O bonds exist due to the Jahn–Teller effect,
and only super-superexchange couplings via short Cu–O bonds are relatively strong [16]. In
MnWO4 there is no similar effect suppressing some of the possible super-superexchange path,
and a system of highly competing interactions results. For example, the spin pairs coupled
by J4 are forced to an antiparallel alignment by the more dominant couplingsJ6, J8, andJ9,
although a ferromagnetic arrangement would be favoured asJ4 > 0. For the couplingsJ1, J2,
andJ3, both parallel and antiparallel spin pairs exist in AF1, and, therefore, these couplings
do not contribute to the ground-state energy. Nevertheless, they are of importance for the
magnetic properties at non-zero temperature and in applied magnetic fields, as reflected in the
complicated magnetic phase diagram.

Based on the coupling constants derived, predictions about the magnetic properties of
MnWO4 can be made and compared with other experimental results. For example, the
propagation vectorEk at a temperature slightly below the ordering temperatureTN can be
deduced from the exchange couplings by maximizing an arbitrary eigenvalue of the Fourier
transform of the exchange matrix with respect tokx , ky , andkz. Including the couplings listed
in table 1, one eigenvalue is given by

λ(kx, ky, kz) = J3 cosX + J4 cosZ + J5 cosY

+ {[J1 cosZ + J6 cos(X + 1
2Z) + J7 cos(X − 1

2Z)]
2

+ [J2 cosZ + J8 cos(X + 1
2Z) + J9 cos(X − 1

2Z)]
2

+ 2 cosY [J1 cosZ + J6 cos(X + 1
2Z) + J7 cos(X − 1

2Z)]

× [J2 cosZ + J8 cos(X + 1
2Z) + J9 cos(X − 1

2Z)]}1/2 (18)

where the following abbreviations have been introduced:

X = 2πkx Y = 2πky Z = 2πkz. (19)

For the specific values listed in table 1, the propagation vectorEk = (−0.285, 1
2, 0.445) is

calculated, which is in quite good agreement with the observed value, namelyEk(AF3) =
(−0.2145(30), 1

2, 0.4580(35)).
The classical Ńeel configuration cannot be the correct ground state AF1, because it is not

even an eigenstate of the Hamiltonian (6). Nevertheless it should be a rather good approx-
imation, and the expected deviations in the sublattice magnetizations can be estimated in the
framework of the model discussed:

δSi = 1

Ni

∑
Eq∈BZ
〈a†
EqaEq〉

= 1

Ni

∑
Eq∈BZ

[ ∑
j=1,4

c̃∗ij c̃ij 〈α†
j Eqαj Eq〉 +

∑
m=5,8

c̃∗imc̃im(1 + 〈β†
mEkβmEk〉)

]
. (20)

This value is the same for all sublattices and can be simplified at absolute zero to

δS = 1

Ni

∑
Eq∈BZ

∑
m=5,8

|c̃im|2 (21)

for an arbitraryi ∈ {1, . . . ,4}, because

lim
T→0
〈α†
j Eqαj Eq〉 = lim

T→0
〈β†
mEqβmEq〉 = 0 ∀ i, m. (22)
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Figure 3. Temperature dependences of the magnetic excitations at the0 point of AF1 and0′ of
AF2 and AF3, respectively. The lines are guides for the eyes.

A numerical calculation givesδS = 0.160, in good agreement with the observed sublattice
magnetization of 4.5(1)µB at 1.5 K and 4.6(1)µB at 1.2 K [1] for theS = 5

2 state of Mn2+.
The temperature dependence of the magnetic excitation energies is of particular interest,

especially near to the transition temperatures. Although discussed only qualitatively, the
softening of magnetic modes in AF1 should be stabilized discontinuously by the first-order
transition to AF2, while the transition AF2→ AF3 should be accompanied by a continuous
stabilization of the magnetic modes. Figure 3 displays the temperature dependence of the
excitations for magnon momentumEq = 0, i.e. at the0 point for AF1 and at0′ for AF2. At
higher temperatures only a quasieleastic broadening was observed, but no individual excitations
could have been resolved.
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Appendix

In order to obtain comprehensive expressions for the analytical dispersion relations (12) the
coefficientsc(j)n , d(j)m , j = 1, 2, n = 0, 1, 2,m = 0, . . . ,3 have been introduced. In this
appendix the specific coefficients are expressed in terms of the exchange couplingsJ1, . . . , J9

and the anisotropy parameterJanis for both directions under consideration. The following
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abbreviation will be used:

J = 2(J4 + J5 + J6− J7− J8 + J9)− Janis . (A.1)

Direction (i) Eq = (−ξ, ξ,0):
c
(1)
0 = J 2 + 2JJ3− 4

[
J 2

4 + J 2
6 − J 2

7 − J 2
8 + J 2

9 + J1(J6− J7) + J2(J9− J8) + J3J4
]

c
(1)
1 = 4[J1(J8− J9) + J2(J7− J6)− J3J5] + 8(J7J8− J4J5− J6J9)

c
(1)
2 = −4J 2

5

(A.2)

d
(1)
0 = −α2 + β2 + γ 2

d
(1)
1 = 2(βγ + βδ + γ ε)

d
(1)
2 = α2 + δ2 + ε2 + 2βε + 2γ δ

d
(1)
3 = 2δε

(A.3)

α = 4[2J7J9− 2J6J8 + J1(J9− J8) + J2(J7− J6)]

β = 2J (2J7 + J1)− 4[J3(J6− J7) + J4(2J6 + J1)]

γ = 2J (2J8 + J2) + 4[J3(J8− J9)− J4(2J9 + J2)]

δ = −4J5(2J6 + J1)

ε = −4J5(2J9 + J2).

(A.4)

The other set of coefficientsc(2)n , n = 0, 1, 2, andd(2)m ,m = 0, . . . ,3, are also derived
from (A.2)–(A.4) after replacingJ1, J2, J3 by−J1,−J2,−J3.

Direction (ii) Eq = (−2η,−2η, 4η):

c
(1)
0 = (J + 2J8)

2 − 4(J5 + J6)
2

c
(1)
1 = 4[J7(J + 2J8)− 2(J5 + J6)(J4 + J9)]

c
(1)
2 = 4

[
J 2

7 − (J4 + J9)
2
] (A.5)

c
(2)
0 = (J − 2J8)

2 − 4(J5− J6)
2

c
(2)
1 = −4[J7(J − 2J8) + 2(J5− J6)(J4 − J9)]

c
(2)
2 = 4

[
J 2

7 − (J4 − J9)
2
]
.

(A.6)

The coefficients of fourth order are also given by (A.3) but with different auxiliaries:

α(1) = 2(J2 + J3)
2 − 2J 2

1

β(1) = 2(J2 + J3)(J + 2J8)− 4J1(J5 + J6)

γ (1) = 2J1(J + 2J8)− 4(J3 + J2)(J5 + J6)

δ(1) = 4J7(J3 + J2)− 4J1(J4 + J9)

ε(1) = 4J1J7− 4(J4 + J9)(J3 + J2)

(A.7)

α(2) = 2(J2 − J3)
2 − 2J 2

1

β(2) = 2(J2 − J3)(J − 2J8)− 4J1(J5− J6)

γ (2) = 2J1(J − 2J8) + 4(J3− J2)(J5− J6)

δ(2) = 4J7(J3− J2)− 4J1(J4 − J9)

ε(2) = 4(J4 − J9)(J3− J2)− 4J1J7.

(A.8)
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